To save only the best match for each element in a collection, use an
ee.Join.saveBest()
. The saveBest()
join functions in an
equivalent way to the saveAll()
join, except for each element in the
primary
collection, it saves the element from the secondary
collection with the best match. Unmatched elements in the primary collection are
dropped. Suppose the intention is to find a meteorological image closest in time to each
Landsat image in the primary
collection. To perform this join, the
ee.Filter
must be redefined for a single join condition (combined filters
will not work with saveBest()
since it is ambiguous how to combine ranks
from multiple sub-Filters):
Code Editor (JavaScript)
// Load a primary collection: Landsat imagery. var primary = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') .filterDate('2014-04-01', '2014-06-01') .filterBounds(ee.Geometry.Point(-122.092, 37.42)); // Load a secondary collection: GRIDMET meteorological data var gridmet = ee.ImageCollection('IDAHO_EPSCOR/GRIDMET'); // Define a max difference filter to compare timestamps. var maxDiffFilter = ee.Filter.maxDifference({ difference: 2 * 24 * 60 * 60 * 1000, leftField: 'system:time_start', rightField: 'system:time_start' }); // Define the join. var saveBestJoin = ee.Join.saveBest({ matchKey: 'bestImage', measureKey: 'timeDiff' }); // Apply the join. var landsatMet = saveBestJoin.apply(primary, gridmet, maxDiffFilter); // Print the result. print(landsatMet);
import ee import geemap.core as geemap
Colab (Python)
# Load a primary collection: Landsat imagery. primary = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') .filterDate('2014-04-01', '2014-06-01') .filterBounds(ee.Geometry.Point(-122.092, 37.42)) ) # Load a secondary collection: GRIDMET meteorological data gridmet = ee.ImageCollection('IDAHO_EPSCOR/GRIDMET') # Define a max difference filter to compare timestamps. max_diff_filter = ee.Filter.maxDifference( difference=2 * 24 * 60 * 60 * 1000, leftField='system:time_start', rightField='system:time_start', ) # Define the join. save_best_join = ee.Join.saveBest(matchKey='bestImage', measureKey='timeDiff') # Apply the join. landsat_met = save_best_join.apply(primary, gridmet, max_diff_filter) # Print the result. display(landsat_met)
Note that a saveBest()
join defines the name of the property with which to
store the best match (‘bestImage’
) and the name of the property with which
to store the goodness of the match metric (‘timeDiff’
). Inspection of the
results indicates that a matching DAYMET image has been added to the property
bestImage
for each Landsat scene in the primary
collection. Each
of these DAYMET images has the property timeDiff
indicating the time
difference in milliseconds between the DAYMET image and the Landsat image, which will be
minimum among the DAYMET images passing the condition in the filter.