SEARCH_INDEX_COLUMNS view
The INFORMATION_SCHEMA.SEARCH_INDEX_COLUMNS
view contains one row for each
search-indexed column on each table in a dataset.
Required permissions
To see search index metadata, you need the
bigquery.tables.get
or bigquery.tables.list
Identity and Access Management (IAM)
permission on the table with the index. Each of the following predefined
IAM roles includes at least one of these permissions:
roles/bigquery.admin
roles/bigquery.dataEditor
roles/bigquery.dataOwner
roles/bigquery.dataViewer
roles/bigquery.metadataViewer
roles/bigquery.user
For more information about BigQuery permissions, see Access control with IAM.
Schema
When you query theINFORMATION_SCHEMA.SEARCH_INDEX_COLUMNS
view, the query
results contain one row for each indexed column on each table in a dataset.
The INFORMATION_SCHEMA.SEARCH_INDEX_COLUMNS
view has the following schema:
Column name | Data type | Value | |
---|---|---|---|
index_catalog |
STRING |
The name of the project that contains the dataset. | |
index_schema |
STRING |
The name of the dataset that contains the index. | |
table_name |
STRING |
The name of the base table that the index is created on. | |
index_name |
STRING |
The name of the index. | |
index_column_name |
STRING |
The name of the top-level indexed column. | |
index_field_path |
STRING |
The full path of the expanded indexed field, starting with the column name. Fields are separated by a period. |
Scope and syntax
Queries against this view must have a dataset qualifier. The following table explains the region scope for this view:
View Name | Resource scope | Region scope |
---|---|---|
[PROJECT_ID.]DATASET_ID.INFORMATION_SCHEMA.SEARCH_INDEX_COLUMNS |
Dataset level | Dataset location |
Optional: PROJECT_ID
: the ID of your
Google Cloud project. If not specified, the default project is used.
DATASET_ID
: the ID of your dataset. For more information, see Dataset qualifier.
Example
-- Returns metadata for search indexes in a single dataset.
SELECT * FROM myDataset.INFORMATION_SCHEMA.SEARCH_INDEX_COLUMNS;
Examples
The following example creates a search index on all columns of my_table
.
CREATE TABLE dataset.my_table( a STRING, b INT64, c STRUCT <d INT64, e ARRAY<STRING>, f STRUCT<g STRING, h INT64>>) AS SELECT 'hello' AS a, 10 AS b, (20, ['x', 'y'], ('z', 30)) AS c; CREATE SEARCH INDEX my_index ON dataset.my_table(ALL COLUMNS);
The following query extracts information on which fields are indexed.
The index_field_path
indicates which field of a column is
indexed. This differs from the index_column_name
only in the case of a
STRUCT
, where the full path to the indexed field is given. In this example,
column c
contains an ARRAY<STRING>
field e
and another STRUCT
called
f
which contains a STRING
field g
, each of which is indexed.
SELECT table_name, index_name, index_column_name, index_field_path
FROM my_project.dataset.INFORMATION_SCHEMA.SEARCH_INDEX_COLUMNS
The result is similar to the following:
+------------+------------+-------------------+------------------+ | table_name | index_name | index_column_name | index_field_path | +------------+------------+-------------------+------------------+ | my_table | my_index | a | a | | my_table | my_index | c | c.e | | my_table | my_index | c | c.f.g | +------------+------------+-------------------+------------------+
The following query joins the INFORMATION_SCHEMA.SEARCH_INDEX_COUMNS
view with
the INFORMATION_SCHEMA.SEARCH_INDEXES
and INFORMATION_SCHEMA.COLUMNS
views
to include the search index status and the data type of each column:
SELECT index_columns_view.index_catalog AS project_name, index_columns_view.index_SCHEMA AS dataset_name, indexes_view.TABLE_NAME AS table_name, indexes_view.INDEX_NAME AS index_name, indexes_view.INDEX_STATUS AS status, index_columns_view.INDEX_COLUMN_NAME AS column_name, index_columns_view.INDEX_FIELD_PATH AS field_path, columns_view.DATA_TYPE AS data_type FROM mydataset.INFORMATION_SCHEMA.SEARCH_INDEXES indexes_view INNER JOIN mydataset.INFORMATION_SCHEMA.SEARCH_INDEX_COLUMNS index_columns_view ON indexes_view.TABLE_NAME = index_columns_view.TABLE_NAME AND indexes_view.INDEX_NAME = index_columns_view.INDEX_NAME LEFT OUTER JOIN mydataset.INFORMATION_SCHEMA.COLUMNS columns_view ON indexes_view.INDEX_CATALOG = columns_view.TABLE_CATALOG AND indexes_view.INDEX_SCHEMA = columns_view.TABLE_SCHEMA AND index_columns_view.TABLE_NAME = columns_view.TABLE_NAME AND index_columns_view.INDEX_COLUMN_NAME = columns_view.COLUMN_NAME ORDER BY project_name, dataset_name, table_name, column_name;
The result is similar to the following:
+------------+------------+----------+------------+--------+-------------+------------+---------------------------------------------------------------+ | project | dataset | table | index_name | status | column_name | field_path | data_type | +------------+------------+----------+------------+--------+-------------+------------+---------------------------------------------------------------+ | my_project | my_dataset | my_table | my_index | ACTIVE | a | a | STRING | | my_project | my_dataset | my_table | my_index | ACTIVE | c | c.e | STRUCT<d INT64, e ARRAY<STRING>, f STRUCT<g STRING, h INT64>> | | my_project | my_dataset | my_table | my_index | ACTIVE | c | c.f.g | STRUCT<d INT64, e ARRAY<STRING>, f STRUCT<g STRING, h INT64>> | +------------+------------+----------+------------+--------+-------------+------------+---------------------------------------------------------------+