Stay organized with collections
Save and categorize content based on your preferences.
Solves for x in the matrix equation A * x = B, finding a least-squares solution if A is overdetermined for each matched pair of bands in image1 and image2. If either image1 or image2 has only 1 band, then it is used against all the bands in the other image. If the images have the same number of bands, but not the same names, they're used pairwise in the natural order. The output bands are named for the longer of the two inputs, or if they're equal in length, in image1's order. The type of the output pixels is the union of the input types.
Usage
Returns
Image.matrixSolve(image2)
Image
Argument
Type
Details
this: image1
Image
The image from which the left operand bands are taken.
image2
Image
The image from which the right operand bands are taken.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[[["Solves for x in the equation A * x = B using a least-squares approach for matching band pairs between two images."],["Accommodates single-band and multi-band images, pairing bands naturally or against all bands in the other image if necessary."],["Output bands inherit names from the longer input or image1's order for equal lengths, with pixel type determined by the union of input types."],["Accessed via `Image.matrixSolve(image2)`, returning a new Image."]]],[]]